
Optimal trees and forests

Filip Malmberg



Todays lecture

Trees and forests

Optimal forests

Minimum spanning forests
Shortest path forests

Applications in image segmentation



Part 1: Forests and trees



Forests and trees

In this lecture, we will consider two special types of graphs: forests and
trees.

A forest is a graph without simple cycles.

A tree is a connected forest

(In other words, a forest is a collection of trees)



Recall: Cycles, connected graphs

A cycle is a path where the start vertex is the same as the end vertex.

A cycle is simple if it has no repeated vertices other than the
endpoints.

Two vertices v ,w ∈ V are linked if G contains a path from v to w .

A graph is connected if every pair of vertices on the graph is linked.



Tree, example

Figure 1: Left: A tree. Right: Not a tree.



Cuts
Informally a cut is a set of edges that, when removed from the graph,
separate the graph into two or more connected components. We can
think of a cut as a boundary between regions.
Let S ⊆ E , and G ′ = (V ,E \ S). If, for all ev ,w ∈ S , it holds that
v 6∼ w

G ′
, then S is a cut on G .

Figure 2: A set of edges (red) forming a cut.



Properties of trees and forests

There is a unique path between each (linked) pair of vertices. Why?

Any subset of the edges of a forest is a cut. Why?



Spanning trees

Definition, spanning tree

Let G be a connected, undirected graph. Let T be a subgraph of G such
that

T is a tree.

V (T ) = V (G ).

Then T is a spanning tree of G .

For any G , there exists at least one spanning tree. Why?



Edge weighted graphs

We associate each edge e ∈ E with a real valued, non-negative
weight, w(e).

The weight of an edge represents the dissimilarity (or, alternatively,
similarity) between the vertices connected by the edge.

For example, we may define the edge weights as

w(eij) = |I (v)− I (j)| , (1)

where I (v) is the intensity of the image element corresponding to v .



Part 2: Minimum spanning trees



Minimum spanning trees

A graph can have many different spanning trees. A minimum
spanning tree (MST) is a spanning tree T = (V ,E ′) that (globally)
minimizes

f (T ) =
∑
e∈E ′

w(e) . (2)

Although this is a global optimization problem, efficient algorithms for
computing minimum spanning trees exist. We will now take a look at
two such algorithms: Prim’s algorithm [7] and Kruskal’s algorithm [6].



Kruskal’s algorithm

Kruskal’s algorithm

Set Enew = ∅.
while there exists an edge ep,q such that p 6∼ g

(V ,Enew )

do

Choose such an edge with minimal weight and add it to Enew .
end

At the termination of the algorithm, (V ,Enew ) is a MST on G .



Kruskal’s algorithm, example
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Figure 3: An edge weighted graph.



Kruskal’s algorithm, example
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Figure 4: Choose an edge with minimal weight that does not form a cycle.



Kruskal’s algorithm, example
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Figure 5: Add this edge to the tree.



Kruskal’s algorithm, example
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Figure 6: Choose an edge with minimal weight that does not form a cycle.



Kruskal’s algorithm, example
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Figure 7: Add this edge to the tree.



Kruskal’s algorithm, example
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Figure 8: Choose an edge with minimal weight that does not form a cycle.



Kruskal’s algorithm, example
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Figure 9: Add this edge to the tree.



Kruskal’s algorithm, example
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Figure 10: Choose an edge with minimal weight that does not form a cycle.



Kruskal’s algorithm, example
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Figure 11: Add this edge to the tree.



Kruskal’s algorithm, example

10

5
7

12
12

9

4
10

4

623

13

147

Figure 12: Choose an edge with minimal weight that does not form a cycle.



Kruskal’s algorithm, example

10

5
7

12
12

9

4
10

4

623

13

147

Figure 13: Add this edge to the tree.



Kruskal’s algorithm, example
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Figure 14: Choose an edge with minimal weight that does not form a cycle.



Kruskal’s algorithm, example
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Figure 15: Add this edge to the tree.



Kruskal’s algorithm, example
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Figure 16: Choose an edge with minimal weight that does not form a cycle.



Kruskal’s algorithm, example
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Figure 17: Add this edge to the tree.



Kruskal’s algorithm, example
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Figure 18: The tree is spanning. The algorithm terminates.



Implementing Kruskal’s algorithm

Kruskal’s algorithm can be shown to run in O(E logV ) time.

By pre-sorting the edges by weight, the step “Choose such an edge
with minimal weight” can be performed in constant time.

To keep track of which vertices are in which components, a
disjoint-set data structure can be used. This data structure allows
efficient implementation of the following operations:

Find: Determine which subset a particular element is in. (Or
determining if two elements are in the same subset).
Union: Merge two subsets into a single subset.



Prim’s algorithm

Prim’s algorithm

Set Vnew = {v}, where v is an arbitrary vertex in V .
Set Enew = ∅.
while Vnew 6= Vdo

Choose an edge ep,q with minimal weight such that p is in Vnew and q
is not.
Add q to Vnew and ep,q to Enew .

end

At the termination of the algorithm, (V ,Enew ) is a MST on G .



Prim’s algorithm, example
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Figure 19: An edge weighted graph.



Prim’s algorithm, example
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Figure 20: Start by adding an arbitrary vertex to Vnew .



Prim’s algorithm, example
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Figure 21: Choose a minimal edge ep,q with such that p is in Vnew and q is not.



Prim’s algorithm, example
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Figure 22: Add q to Vnew and ep,q to Enew .



Prim’s algorithm, example
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Figure 23: Choose a minimal edge ep,q with such that p is in Vnew and q is not.



Prim’s algorithm, example
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Figure 24: Add q to Vnew and ep,q to Enew .



Prim’s algorithm, example
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Figure 25: Choose a minimal edge ep,q with such that p is in Vnew and q is not.



Prim’s algorithm, example
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Figure 26: Add q to Vnew and ep,q to Enew .



Prim’s algorithm, example
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Figure 27: Choose a minimal edge ep,q with such that p is in Vnew and q is not.



Prim’s algorithm, example
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Figure 28: Add q to Vnew and ep,q to Enew .



Prim’s algorithm, example
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Figure 29: Choose a minimal edge ep,q with such that p is in Vnew and q is not.



Prim’s algorithm, example
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Figure 30: Add q to Vnew and ep,q to Enew .



Prim’s algorithm, example
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Figure 31: Choose a minimal edge ep,q with such that p is in Vnew and q is not.



Prim’s algorithm, example
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Figure 32: Add q to Vnew and ep,q to Enew .



Prim’s algorithm, example
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Figure 33: Choose a minimal edge ep,q with such that p is in Vnew and q is not.



Prim’s algorithm, example
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Figure 34: Add q to Vnew and ep,q to Enew .



Prim’s algorithm, example
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Figure 35: Vnew = V . The algorithm terminates.



Implementing Prim’s algorithm

The edges are not neccesarily visited in increasing order, so we can’t
pre-sort the edges.

Instead, we can use some variant of a priority queue to efficiently find
the next edge with minimum weight.

With such an implementation, Prim’s algorithm can be shown to run
in O(E logV ).



Spanning forests relative to seeds

Definition, spanning forest

Let G be a connected, undirected graph, and let S ⊆ V be a set of
seedpoints. Let T be a subgraph of G such that

T is a forest.

V (T ) = V (G ).

Each connected component of T contains exactly one seedpoint.

Then T is a spanning forest of G , relative to S .



Minimum spanning forests

A spanning forest T of G is a minimum spanning forest (MSF) if the
sum of the edge weights is smaller than for any other spanning forest
relative to S .

We can use Prim’s or Kruskal’s algorithms, with slight modifications,
to compute MSFs.



Minimum spanning forests and segmentation

A MSF partitions a graph into a number of components, each
containing exactly one seed-point.

We will now examine how this can be used for seeded segmentation.

Figure 36: Left: Seed-points representing background (red) and object (blue).
Right: Segmentation by MSFs.



But each seedpoint defines a connected component?

Figure 37: A pixel adjacency graph with “extra” vertices, corresponding to label
categories.



MSF cuts, global optimality

For any spanning forest T on G , we define a induced cut C as follows:

C (T ) = {ep,q ∈ E | p 6∼ q
T

} . (3)

For any cut C , we define the weight of a cut as

min
e∈S

(W (e)) . (4)

If S is a cut induced by a MSF, then the weight of S is greater than
or equal to the cost of any other cut that separates the seedpoints [1].



Properties of MSF cuts

Contrast invariance

The MSF computations depend on the relative ordering of the edge
weights, but not on the absolute weight values.

Thus, the segmentation result is invariant under strictly monotonic
transformations of the edge weights. (A transformation that preserves
the order)



Properties of MSF cuts

Seed-relative robustness.

The core, or robustness region, of a seedpoint is the region (set of
vertices) where the seed can be moved without altering the
segmentation result.

For MSF-cuts, the core of each seedpoint can be determined exactly,
and is usually large. [2]



MSF cuts and Watersheds

There is a strong relation between segmentation by MSFs and the
Watershed approach to segmentation:

J. Cousty et al., Watershed cuts: minimum spanning forests, and the
drop of water principle. IEEE PAMI, 31(8), 2009.

J. Cousty et al., Watershed cuts: Thinnings, shortest path forests,
and topological watersheds. IEEE PAMI, 32(5), 2010.



Part 3: Shortest path forests



Shortest paths on graphs

Let G be a connected, undirected,edge weighted graph. We define
the length f (π) of a path π on G as

f (π) =
k−1∑
i=1

w(evi ,vi+1) . (5)

For each pair of vertices v ,w , there exists one or more paths in G
that start at v and end at w . Among these paths, there is at least
one path for which the length is minimal.

Formally, a path π is a shortest path if f (π) ≤ f (τ) for any other
path τ with org(τ) = org(π) and dst(τ) = dst(π).



Shortest paths on graphs

The length of the shortest path between two vertices provides a
notion of distance, or degree of connectedness, between pairs of
vertices in the graph.

Again, we have a global optimization problem: Among all paths
between a pair of vertices, we seek one that has minimum length.
Fortunately, there are efficient algorithms that solve this problem.

Given a set S ⊆ V of seed-points, it is in fact possible to
simultaneously compute minimal cost paths from S to all other
vertices in V . The output of this computation is a shortest path
forest.



Shortest paths on graphs

In general, the shortest path between two vertices is not unique. The
set of shortest paths between two image elements p and q is denoted
πmin(p, q).

For two sets A ⊆ V and B ⊆ V , π is a path between A and B if
org(π) ∈ A and dst(π) ∈ B. If f (π) ≤ f (τ) for any other path τ
between A and B, then π is a shortest path between A and B. The
set of shortest paths between A and B is denoted πmin(A,B).



Predecessor maps

Predecessor maps, definition

A predecessor map is a mapping P that assigns to each vertex v ∈ V
either an element w ∈ N (v), or ∅.

For any v ∈ V , a predecessor map P defines a path P∗(p) recursively. We
denote by P0(v) the first element of P∗(v).



Spanning forests as predecessor maps

Spanning, definition

A spanning forest is a predecessor map that contains no cycles, i.e.,
|P∗(v)| is finite for all v ∈ V . If P∗(v) = ∅, then v is a root of P.

Shortest path forests

Let S ⊆ V . If P is a spanning forest such that P∗(v) ∈ πmin(v ,S) for all
vertices v ∈ V , then we say that P is an shortest path forest with respect
to S .



Computing shortest path forests

In 1956, Dijkstra [4] proposed an algorithm for computing shortest
path forests.

The algorithm is based on the observation that if π = π1 · π2 is a
shortest path between org(π) and dst(π), then π1 and π2 must also
be shortest paths between their respective endpoints.

Thus, we can recursively reduce the problem to a set of ”smaller”
subproblems.



Dijkstra’s algorithm

Input: A graph G = (V ,E ) and a set S ⊆ V of seed-points.
Auxillary: Two set of vertices F and Q whose union is V .
Set F← ∅,Q← V .
For all v ∈ V , set P(v) + leftarrow∅.
while Q 6= ∅ do

Remove from Q a vertex v such that f (P ∗ (v)) is minimum, and add
it to F .
foreach w ∈ N (w) do

If f (P∗(w) · 〈w , v〉 < f (P∗(v))), then set P(w)← v .
end

end



Dijkstra’s algorithm, example
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Figure 38: Dijkstra’s algorithm.



Dijkstra’s algorithm, example
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Figure 39: Dijkstra’s algorithm.



Dijkstra’s algorithm, example
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Figure 40: Dijkstra’s algorithm.



Dijkstra’s algorithm, example
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Figure 41: Dijkstra’s algorithm.



Dijkstra’s algorithm, example
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Figure 42: Dijkstra’s algorithm.



Dijkstra’s algorithm, example
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Figure 43: Dijkstra’s algorithm.



Dijkstra’s algorithm, example
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Figure 44: Dijkstra’s algorithm.



Dijkstra’s algorithm, example

0 1 6

2 3 ∞

6 ∞ ∞

2

1 5

71

3 2

3

2 1

1

4

Figure 45: Dijkstra’s algorithm.



Dijkstra’s algorithm, example
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Figure 46: Dijkstra’s algorithm.



Dijkstra’s algorithm, example
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Figure 47: Dijkstra’s algorithm.



Dijkstra’s algorithm, example
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Figure 48: Dijkstra’s algorithm.



Dijkstra’s algorithm, example

0 1 6

2 3 8

6 5 ∞

2

1 5

71

3 2

3

2 1

1

4

Figure 49: Dijkstra’s algorithm.



Dijkstra’s algorithm, example
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Figure 50: Dijkstra’s algorithm.



Dijkstra’s algorithm, example
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Figure 51: Dijkstra’s algorithm.



Dijkstra’s algorithm, example
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Figure 52: Dijkstra’s algorithm.



Dijkstra’s algorithm, example
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Figure 53: Dijkstra’s algorithm.



Dijkstra’s algorithm, example
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Figure 54: Dijkstra’s algorithm.



Dijkstra’s algorithm, example
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Figure 55: Dijkstra’s algorithm.



Dijkstra’s algorithm, example
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Figure 56: Dijkstra’s algorithm.



Implementing Dijkstra’s algorithm

Just like with Prim’s algorithm, we can use a priority queue to
efficiently extract the vertex for which f (P∗(v)) is minimum.

The algorithm can be shown to run in O(|E |+ |V | log |V |). (For
some types of graphs, we can do better)



Live-wire segmentation

The perhaps most straightforward way of utilizing shortest cost path
calculations in image segmentation is to consider the path itself as a
boundary between two regions. This idea is used in the live-wire
method.

To segment an object in a 2D image with live-wire, the user selects a
point on the object boundary. Dijkstras algorithm is then used to
compute shortest paths from this point to all other points in the
image.

As the user moves the pointer through the image, a minimal cost
path from the current position to the seed-point the live wire is
displayed in real-time.



Live-wire segmentation

Figure 57: Live-wire segmentation.



Seeded segmentation with shortest paths

Associate each seed-point with a label, and assign to all other vertices
the label of the closest seedpoint as determined by the minimum cost
path forest.

We can modify Dijkstra’s algorithm to propagate the labels along
with the shortest paths.

Figure 58: Seeded segmentation with shortest paths.



Approximating Euclidean distances

The length of the minimal cost path between two vertices can be
interpreted as a ”distance” between them.

On a 2D or 3D regular grid, the cost of the minimal path between
two vertices can approximate the Euclidean distance between the
corresponding points.

The quality of this approximation depends on the definition of the
graph, and the selection of edge weights [8].



Approximating Euclidean distances

Figure 59: Distances in discrete grids [3]. The weight of each edge is equal to its
Euclidean length.



Alternative path costs

Figure 60: Image, with seedpoints in red.



Alternative path costs

Figure 61: Path costs (inverted).



Alternative path costs

Figure 62: Path cost function: The cost of a path is the maximum value found
along the path. Dijkstra’s algorithm still works!



Alternative path costs

Figure 63: Path cost function: The cost of a path is the absolute difference
between the maximum and minimum values found along the path. Dijkstra’s
algorithm no longer works!.



Extensions of Dijkstra’s algorithm

For now, we have defined the length of a path as the sum of edge weights
along the path.

Are there other path cost functions that could be of interest in image
processing?

If so, what conditions do these functions need to satisfy in order to
guarantee the existence of a shortest path forest?

These questions were investigated by Falcao et al. [5].

(Chris’s talk next week!)
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